ABONAMENTE VIDEO REDACȚIA
RO
EN
Numărul 148 Numărul 147 Numărul 146 Numărul 145 Numărul 144 Numărul 143 Numărul 142 Numărul 141 Numărul 140 Numărul 139 Numărul 138 Numărul 137 Numărul 136 Numărul 135 Numărul 134 Numărul 133 Numărul 132 Numărul 131 Numărul 130 Numărul 129 Numărul 128 Numărul 127 Numărul 126 Numărul 125 Numărul 124 Numărul 123 Numărul 122 Numărul 121 Numărul 120 Numărul 119 Numărul 118 Numărul 117 Numărul 116 Numărul 115 Numărul 114 Numărul 113 Numărul 112 Numărul 111 Numărul 110 Numărul 109 Numărul 108 Numărul 107 Numărul 106 Numărul 105 Numărul 104 Numărul 103 Numărul 102 Numărul 101 Numărul 100 Numărul 99 Numărul 98 Numărul 97 Numărul 96 Numărul 95 Numărul 94 Numărul 93 Numărul 92 Numărul 91 Numărul 90 Numărul 89 Numărul 88 Numărul 87 Numărul 86 Numărul 85 Numărul 84 Numărul 83 Numărul 82 Numărul 81 Numărul 80 Numărul 79 Numărul 78 Numărul 77 Numărul 76 Numărul 75 Numărul 74 Numărul 73 Numărul 72 Numărul 71 Numărul 70 Numărul 69 Numărul 68 Numărul 67 Numărul 66 Numărul 65 Numărul 64 Numărul 63 Numărul 62 Numărul 61 Numărul 60 Numărul 59 Numărul 58 Numărul 57 Numărul 56 Numărul 55 Numărul 54 Numărul 53 Numărul 52 Numărul 51 Numărul 50 Numărul 49 Numărul 48 Numărul 47 Numărul 46 Numărul 45 Numărul 44 Numărul 43 Numărul 42 Numărul 41 Numărul 40 Numărul 39 Numărul 38 Numărul 37 Numărul 36 Numărul 35 Numărul 34 Numărul 33 Numărul 32 Numărul 31 Numărul 30 Numărul 29 Numărul 28 Numărul 27 Numărul 26 Numărul 25 Numărul 24 Numărul 23 Numărul 22 Numărul 21 Numărul 20 Numărul 19 Numărul 18 Numărul 17 Numărul 16 Numărul 15 Numărul 14 Numărul 13 Numărul 12 Numărul 11 Numărul 10 Numărul 9 Numărul 8 Numărul 7 Numărul 6 Numărul 5 Numărul 4 Numărul 3 Numărul 2 Numărul 1
×
▼ LISTĂ EDIȚII ▼
Daniel Costea

Daniel Costea

Senior Software Developer @ EU Agency

PROGRAMARE
O incursiune în lumea asistenților AI de la OpenAI orchestrați cu agenți Microsoft Semantic Kernel

Generative AI este o ramură a inteligenței artificiale care poate crea conținut nou, cum ar fi text, imagini sau cod, bazat pe date și modele existente. Ca dezvoltator care vreau să îmbunătățesc aplicațiile mele cu Generative AI, am descoperit că Semantic Kernel de la Microsoft este o adevărată comoară. Semantic Kernel este un SDK open-source, incredibil de ușor de folosit, infuzat cu AI design patterns. Putem acum să ne dotăm aplicațiile cu capacități incredibil de inteligente și responsive, folosind funcții avansate ca ingineria de prompturi și orchestratorii AI.

PROGRAMARE
Microsoft ML.NET 2.0: Cum îmbunătățim un model de machine learning în trei pași simpli

Ca .NET developer am fost tentat de multe ori spre lumea Python datorită a ceea ce oferă în domeniul AI. Îmi amintesc că pregăteam un material pentru un eveniment, în care făceam o demonstrație pentru .NET pe Raspberry Pi. Fiind pe Raspberry Pi nu se poate să reziști prea mult din a folosi datele direct de la senzori. Cum am citit o mulțime de date de la senzori, în mod natural a venit pasul următor, acela de a face ceva cu aceste date. Se cunoaște că partea nevralgica în AI este lipsa datelor. Dacă nu ai date, nu ai distracție. Eu aveam acele date însă nu știam ce să fac cu ele, chiar dacă în ele stătea un potențial uriaș. Acum îmi place să spun că în AI datele nu sunt combustibilul, ci motorul, spre deosebire de programarea clasică.

PROGRAMARE
Roslyn Source Generators

Pentru machine learning punctul central este modelul. Fie vă antrenați propriul model de machine learning, fie aveți unul de consumat în codul de producție, trebuie să cunoașteți câteva informații despre modul în care a fost instruit, cum ar fi eticheta (în engleza Label sau caracteristica țintă), modelele de date (de intrare și ieșire) și scenariul care a fost folosit pentru antrenare. Împreună cu aceste detalii, este foarte important să cunoașteți acuratețea modelului dvs. de machine learning. În unele cazuri ați putea avea instrumente precum MLOps pentru a avea grijă de aceste detalii, dar poate că nu aveți.

PROGRAMARE
Machine Learning cu Microsoft ML.NET (III)

Pentru a recapitula cele spuse până acum, este clar că atunci când construim un model, selecția elementelor de antrenament este cel mai dificil aspect. AutoML vă poate furniza o listă cu cele mai bune modele, datorită datelor metrice de evaluare care acompaniază fiecare model. Pregătirea datelor este complexă și necesită mult timp. Alături de fluxul de antrenament (training pipeline), datele pregătite construiesc un model pregătit să facă predicții.

PROGRAMARE
Machine Learning cu Microsoft ML.NET (II)

La finalul primei părți din seria curentă de articole, am ajuns la o linie de preprocesare, pregătită să încarce date și să concateneze elementele selectate pentru antrenarea modelului într-un feature special numit Features și un feature țintă numit Label care deservește o categorie unde elementele selectate sunt supuse clasificării. Dacă nu avem coloana Label în setul nostru de date, trebuie să adnotăm câmpul țintă astfel. Evident, pentru alte scenarii s-ar putea ca altul să fie feature-ul țintă pe care trebuie să îl adnotăm:


[ColumnName(„Label”)]
public string Source { get; set; }

PROGRAMARE
Machine Learning cu Microsoft ML.NET (I)

Scopul acestei serii de articole este de a oferi un ghid complet în Machine Learning, de la date la predicții, pentru programatori .NET care lucrează în ecosistemul .NET. Acest lucru este posibil cu Microsoft ML.NET și Jupyter Notebooks. Mai mult, nu trebuie să fiți data scientist pentru a lucra cu machine learning.

PROGRAMARE
Este Microsoft ML.NET încă un framework de machine learning?

În lumea data science și a machine learning, limbajul de programare Python face regulile. În plus, frameworkurile existente- TensorFlow, Keras, Torch, CoreML, CNTK- nu sunt ușor de integrat cu proiectele .NET. Frameworkul ML.NET este bazat pe .NET Core și .NET Standard (moștenind capacitatea de a rula pe Linux, macOS și Windows), fiind conceput ca o platformă extensibilă. Așadar se pot consuma modele create cu alte frameworkuri populare cum sunt: TensorFlow, ONNX , CNTK, Infer.NET. Microsoft ML.NET este mai mult decât machine learning, deoarece include deep learning și vă oferă acces la o mare varietate de scenarii de deep learning, cum ar fi clasificarea de imagini sau detectarea de obiecte.

NUMĂRUL 147 - Automotive

Sponsori

  • Accenture
  • BT Code Crafters
  • Accesa
  • Bosch
  • Betfair
  • MHP
  • BoatyardX
  • .msg systems
  • P3 group
  • Ing Hubs
  • Cognizant Softvision
  • Colors in projects

Design contribution